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Identity-based Authorization

• At the core of today’s grid security infrastructure is the 
concept of identity and impersonation.

• A grid certificate provides you with a globally-recognized 
identification.

• The grid proxy allows a third party to impersonate you, (ideally) 
on your behalf.

• The remote service maps your identity to some set of locally-
defined authorizations.

• We believe this approach is fundamentally wrong because 
it exposes too much global state: identity and policy 
should be kept locally!



Capability-based Authorization

• We want to change the infrastructure to focus on capabilities!

• The tokens passed to the remote service describe what 
authorizations the bearer has.

• For traceability purposes, there may be an identifier that 
allows tracing of the token bearer back to an identity.

• Identifier != identity.  It may be privacy-preserving, requiring 
the issuer (VO) to provide help in mapping.

• Example: “The bearer of this piece of paper is entitled to write 
into /castor/cern.ch/cms".



Capabilities versus Impersonation

• If GSI took over the world, an attacker could use a stolen 
grid proxy to make withdrawals from your bank account.

• With capabilities, a stolen token only gets you access to a 
specific authorization (“stageout to /store/user at 
Nebraska”).

• SciTokens is following the principle of least privilege for 
distributed scientific computing.



SciTokens Project

• The SciTokens project, starting July 2017, aims to:

• Introduce a capabilities-based authorization infrastructure
for distributed scientific computing,

• Provide a reference platform, combining CILogon, HTCondor, 
CVMFS, and XRootD, and

• Implement specific use cases to help our science 
stakeholders (LIGO and LSST) better achieve their scientific 
aims.



Three-Legged Authorization

• In OAuth2, there are three abstract entities involved in the 
authorization workflow:

• Authorization server issues capabilities (tokens).

• The resource owner (end-user) approves authorizations.

• The client receives tokens.  Often, this is the third-party 
website or smartphone app.

• Once the token is issued, it can be used at the resource 
server to access some protected resource.

• In the Google example, Google runs both the authorization 
and resource servers.
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SciTokens Model

• Integrating an OAuth2 
client on the HTCondor
submit host

• Enhancing CILogon to 
support OAuth2 with VO-
defined scopes

• Enhancing HTCondor to 
manage token refresh, 
attenuation, and delivery 
to jobs

• Enhancing data services 
(CVMFS, Xrootd) to allow 
read/writes using tokens 
instead of grid proxies
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End-Goal

• The end-goal is this

• The first time you use HTCondor, you navigate to a web 
interface and setup your desired permissions.

• On every subsequent condor_submit, HTCondor will 
transparently create the access token for you.  User sees 
nothing.

• Replace CERN, usernames, and authorization as desired.

• Goals:

• Build an OAuth2 client into HTCondor.

• Allow HTCondor to manage capability tokens and their 
lifetimes for the running job.

• Enable the use of capability tokens for data access and 
other use cases.
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Architecture
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Tokens for
Distributed Science Infrastructures

• Distributed science infrastructures are distinct from a “resource 
server” like Google because they are not run by a single 
central entity.

• Hence, unlike Google, we can’t use opaque random strings for 
the token.  We need something that allows for distributed 
verification.

• Given a token, a storage service can determine it is valid.
• Analogously, given a proxy chain and a set of trust roots, you can 

determine the GSI proxy is valid.
• The operational model is a site sets aside storage for each VO 

but the VOs manage the authorizations within these areas.



JWT in action!

• Free tokens!  Navigate to https://demo.scitokens.org to 
get your free tokens!

• This demo illustrates the access token format we’re 
working on.

• Utilizes JSON Web Tokens (JWT) as the access token format.
• Various RFCs provide clear guidance on how to verify token 

integrity.
• Adds a few domain-specific claims for receiving access to 

storage.
• The tokens are base64-encoded and can be used as part 

of a curl command to use protected resources.



Wait, I’ve seen this before!

• If you’re from ALICE and getting a sense of déjà vu — you’re right!

• The capability-based infrastructure is precisely the authorization infrastructure 
used by ALICE for the past decade.

• SciTokens takes this successful model, recasts it using modern web protocols, 
and utilizes OAuth2 workflows to issue the tokens.

• The use of common protocols and workflows means that we have a large number 
of battle-tested libraries we can leverage (spend our time doing other stuff 
besides writing the basics!).

• Using JWT-formatted access tokens is somewhat-commonplace among web 
companies.

• We think SciTokens is unique in using JWT access tokens for distributed 
verification in a federated infrastructure.



SciTokens and the WLCG Authorization 
Working Group

• So far we have:
• HTCondor “credmon” integration for OAuth2 tokens.
• Java and Python client libraries.
• Java-based token server.
• XRootD plugins for authorizing with SciTokens.
• Prototype “authenticated CVMFS” integration.
• Prototype dCache SciTokens authorization.

• We are working within the WLCG Authorization Working Group 
to standardize the use of SciTokens.

• I personally hope this is sufficiently close enough to adopt as 
“SciTokens 2.0”!

• The working group is looking at harder problems at how these 
capability tokens can be issued.



Thanks!

Visit
https://scitokens.org/

for more info.

Any questions?



Backup



Example Token, Decoded

• The decoded token contains 
multiple scopes - basically 
filesystem authorizations.

• The audience narrows who the 
token is intended for.

• The issuer identifies who created 
the token; value used to locate the 
public keys needed to validate 
signature.

• The subject is an opaque identifier 
for the resource owner.  In this case, 
it also happens to be the identity.

• The expiration is a Unix timestamp 
when the token expires.  A typical 
lifetime is 10 minutes.



Early results on OSG

• We have been able to get a basic end-to-end 
token-based auth{z,n} workflow working for the 
OSG VO submit service.

• This includes plugins to Xrootd to validate tokens 
presented via HTTP and to write files out with the 
correct Unix user permissions.

• Cheats:
• instead of using OAuth2 to generate the token, 

we keep a signing key on the submit host.

• only one token needed.

• submit host and storage server owned by OSG.


