
Capability-Based Authorization for 
HEP
Brian Bockelman, Derek Weitzel, Jim Basney, Todd Tannenbaum, 
Zach Miller
See https://scitokens.org for more info!

This material is based upon work supported by the National Science Foundation under Grant 
No. 1738962. Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

https://scitokens.org/


Identity-based Authorization

• At the core of today’s grid security infrastructure is the 
concept of identity and impersonation.

• A grid certificate provides you with a globally-recognized 
identification.

• The grid proxy allows a third party to impersonate you, (ideally) 
on your behalf.

• The remote service maps your identity to some set of locally-
defined authorizations.

• We believe this approach is fundamentally wrong because 
it exposes too much global state: identity and policy 
should be kept locally!



Capability-based Authorization

• We want to change the infrastructure to focus on capabilities!

• The tokens passed to the remote service describe what 
authorizations the bearer has.

• For traceability purposes, there may be an identifier that 
allows tracing of the token bearer back to an identity.

• Identifier != identity.  It may be privacy-preserving, requiring 
the issuer (VO) to provide help in mapping.

• Example: “The bearer of this piece of paper is entitled to write 
into /castor/cern.ch/cms".



Capabilities versus Impersonation

• If GSI took over the world, an attacker could use a stolen 
grid proxy to make withdrawals from your bank account.

• With capabilities, a stolen token only gets you access to a 
specific authorization (“stageout to /store/user at 
Nebraska”).

• SciTokens is following the principle of least privilege for 
distributed scientific computing.



SciTokens Project

• The SciTokens project, starting July 2017, aims to:

• Introduce a capabilities-based authorization infrastructure
for distributed scientific computing,

• Provide a reference platform, combining CILogon, HTCondor, 
CVMFS, and XRootD, and

• Implement specific use cases to help our science 
stakeholders (LIGO and LSST) better achieve their scientific 
aims.



Three-Legged Authorization

• In OAuth2, there are three abstract entities involved in the 
authorization workflow:

• Authorization server issues capabilities (tokens).

• The resource owner (end-user) approves authorizations.

• The client receives tokens.  Often, this is the third-party 
website or smartphone app.

• Once the token is issued, it can be used at the resource 
server to access some protected resource.

• In the Google example, Google runs both the authorization 
and resource servers.

Resource Owner

Authorization
Server

Client



SciTokens Model

• Integrating an OAuth2 
client on the HTCondor
submit host

• Enhancing CILogon to 
support OAuth2 with VO-
defined scopes

• Enhancing HTCondor to 
manage token refresh, 
attenuation, and delivery 
to jobs

• Enhancing data services 
(CVMFS, Xrootd) to allow 
read/writes using tokens 
instead of grid proxies

Submit Execute Data

Scheduler

Token
Manager

T token

Launcher

Job

T

T

Data
Server

Token
Server

T

T

User

= tokenT



End-Goal

• The end-goal is this

• The first time you use HTCondor, you navigate to a web 
interface and setup your desired permissions.

• On every subsequent condor_submit, HTCondor will 
transparently create the access token for you.  User sees 
nothing.

• Replace CERN, usernames, and authorization as desired.

• Goals:

• Build an OAuth2 client into HTCondor.

• Allow HTCondor to manage capability tokens and their 
lifetimes for the running job.

• Enable the use of capability tokens for data access and 
other use cases.

CMS user @ cern.ch

HTCondor

Stage Output

CERN



SCITOKENS-
PROXY-INIT

PASSWORD IN 
TERMINAL

COPY/PASTE

USER 
MANAGEMENT 

OF FILES



Architecture

Job Submission Job Execution

Data Access

condor_submit

condor_schedd

condor_credd

condor_shadow

condor_startd

condor_starter

User’s job

Token Server

Data Server

(CVMFS / XRootD)

User

Policy DB
= refresh tokens

A

A A

R

R A = access tokens

A

Identity Provider



Tokens for
Distributed Science Infrastructures

• Distributed science infrastructures are distinct from a “resource 
server” like Google because they are not run by a single 
central entity.

• Hence, unlike Google, we can’t use opaque random strings for 
the token.  We need something that allows for distributed 
verification.

• Given a token, a storage service can determine it is valid.
• Analogously, given a proxy chain and a set of trust roots, you can 

determine the GSI proxy is valid.
• The operational model is a site sets aside storage for each VO 

but the VOs manage the authorizations within these areas.



JWT in action!

• Free tokens!  Navigate to https://demo.scitokens.org to 
get your free tokens!

• This demo illustrates the access token format we’re 
working on.

• Utilizes JSON Web Tokens (JWT) as the access token format.
• Various RFCs provide clear guidance on how to verify token 

integrity.
• Adds a few domain-specific claims for receiving access to 

storage.
• The tokens are base64-encoded and can be used as part 

of a curl command to use protected resources.



Wait, I’ve seen this before!

• If you’re from ALICE and getting a sense of déjà vu — you’re right!

• The capability-based infrastructure is precisely the authorization infrastructure 
used by ALICE for the past decade.

• SciTokens takes this successful model, recasts it using modern web protocols, 
and utilizes OAuth2 workflows to issue the tokens.

• The use of common protocols and workflows means that we have a large number 
of battle-tested libraries we can leverage (spend our time doing other stuff 
besides writing the basics!).

• Using JWT-formatted access tokens is somewhat-commonplace among web 
companies.

• We think SciTokens is unique in using JWT access tokens for distributed 
verification in a federated infrastructure.



SciTokens and the WLCG Authorization 
Working Group

• So far we have:
• HTCondor “credmon” integration for OAuth2 tokens.
• Java and Python client libraries.
• Java-based token server.
• XRootD plugins for authorizing with SciTokens.
• Prototype “authenticated CVMFS” integration.
• Prototype dCache SciTokens authorization.

• We are working within the WLCG Authorization Working Group 
to standardize the use of SciTokens.

• I personally hope this is sufficiently close enough to adopt as 
“SciTokens 2.0”!

• The working group is looking at harder problems at how these 
capability tokens can be issued.



Thanks!

Visit
https://scitokens.org/

for more info.

Any questions?



Backup



Example Token, Decoded

• The decoded token contains 
multiple scopes - basically 
filesystem authorizations.

• The audience narrows who the 
token is intended for.

• The issuer identifies who created 
the token; value used to locate the 
public keys needed to validate 
signature.

• The subject is an opaque identifier 
for the resource owner.  In this case, 
it also happens to be the identity.

• The expiration is a Unix timestamp 
when the token expires.  A typical 
lifetime is 10 minutes.



Early results on OSG

• We have been able to get a basic end-to-end 
token-based auth{z,n} workflow working for the 
OSG VO submit service.

• This includes plugins to Xrootd to validate tokens 
presented via HTTP and to write files out with the 
correct Unix user permissions.

• Cheats:
• instead of using OAuth2 to generate the token, 

we keep a signing key on the submit host.

• only one token needed.

• submit host and storage server owned by OSG.


